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Several models for the scattering of sound waves by spherical particles were comparatively 
investigated. The models included both rigorous approaches like the ones suggested by Faran, 
Epstein-Carhart-Allegra-Hawley, Hay and Mercier as well as semiempirical approaches by Kytömaa, 
Moore and Skripalle. It was found, that Farans model is numerically more stable than the other rigorous 
approaches while providing sufficient detail. This makes it superior to the semiempirical models, which 
are numerically easy to handle, but fail to describe scattering for larger particle sizes and frequencies. 
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1 INTRODUCTION 

Ultrasound scattering is a physical phenomenon 
of considerable importance for many applications. 
Amongst them are particle sizing [1] , zeta-
potential measurements and diagnostic 
applications in several medical disciplines [2]. 
Such a huge spectrum of applications justifies the 
plethora of modeling approaches developed to 
describe this phenomenon. 

Aimed to select the optimal model for particle 
sizing by sound backscattering, in this work we 
focus on modeling approaches developed to 
describe the behavior of spherical objects. The 
approaches are divided into two groups. The first 
group includes models based on the two phase 
approach, such as the one developed by Kytömaa 
and Atkinson [3–6]. This model is capable to 
provide accurate relationships for the attenuation 
and sound speed in a suspension, as long as the 
particles are not large compared to the sound 
wavelengths. However it cannot be used to 
describe backscattering since the propagation and 
attenuation of sound waves is only considered in 
the forward direction. 

The second group of models considers the 
scattering behavior of individual particles by 
solving the equation of wave propagation inside 
and outside the particles [7]. They can cover 
single scattering as well as multiple scattering [8] 
(which is extremely challenging). This group of 
models includes those developed by Faran [9], 
Epstein-Carhart-Allegra-Hawley (ECAH) [10,11] 
and Hay and Mercer (HM) [12]. The advantage of 
these models is the accurate description of the 
scattering behavior of particles combined with the 
possibility to include elastic, viscous and thermal 
effects simultaneously. The three approaches 
differ only in the underlying approximations and 
will be now discussed in more detail. 

2 RIGOROUS MODELS 

2.1 Faran Model 

Faran model for the scattering of sound waves by 
spherical particles is based on three main 
assumptions: (i) the mechanical behavior of the 
particle follows classical continuous mechanics for 
elastic objects, (ii) the continuous phase is 
considered inviscid, and (iii) thermal dissipation is 
neglected. Additional assumptions are plane 
incident sound wave, steady state irradiation and 
wavelength larger than the particle size. The 
displacement of a sphere by an acoustical wave 
can then be derived from a scalar potential, ψ and 
a vector potential A [9]. 

u   A     (1) 

The displacement can be separated into the two 
wave equations: 
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Equations (2) and (3) describe the propagation of 
longitudinal and shear waves respectively. The 
solution of these equations requires the 
specification of three boundary conditions at the 
particle interface: (i) the pressure of the fluid and 
normal stress are equal, (ii) the displacement of 
fluid and solid is equal, and (iii) the tangential and 
shear stresses are zero. The relationship between 
displacement and pressure is given by [9]: 
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Accordingly, the scattered pressure becomes: 
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where pi is the incident pressure θ is the 
scattering angle and hn is the hyperbolic Bessel 
function. The so called phase shift of the n

th
 

scattered wave ηn is defined as: 
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with the intermediate angles given by: 
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The boundary impedance phase angle is equal to: 
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where the function ζn is easy to implement and 
numerically stable [9]. Furthermore it only 
depends on three physical parameters of the 
solid: the density ρ1, the compressional velocity c1 
and the Poisson ratio σ. The last two quantities 
are involved in the expressions of xi as follows: 
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where c2 is the shear velocity, which is given as a 
function of c1 and σ 
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Far Field Function 

The far field function is defined as an 
approximation of the amplitude of a scattered 
wave at large distance from the particle: 
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Equation (5), the equation for the pressure, can 
be simplified at large distances from the sphere as 
follows: 
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leading to the following expression for the far field 

function for the Faran model: 
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Attenuation 

The attenuation coefficient αs describes the loss 
of acoustic energy over a distance ∆z=z1-z2, and 
can be expressed as: 
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An expression for the attenuation for the ECAH 
model [10,11] can be found in the Doctoral thesis 
of Hipp [7]. Using similarities in the ECAH and 
Faran models, the following expression for the 
attenuation in the Faran model was found: 
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Note that the attenuation has to be multiplied by 
the volume fraction of particles and added to the 
attenuation of the dispersed phase. 

2.2 The ECAH model 

The ECAH model is the most accurate and 
comprehensive approach developed to account 
for sound scattering by particles[10]. The 
assumption of isotropicity and linear elastic 
behavior of particles is extended by suitable 
expressions for viscous and thermal dissipations. 
This comes at the cost of a more complex 
theoretical description of the problem, and ill-
conditioned equations. Nevertheless this model 
represents a gold standard, against which all 
other approaches need to be tested. The relevant 
equations of the model, and the articulated 
boundary conditions, are reported in the abundant 
literature on the topic [10,11]. 

2.3 The HM model 

The model proposed by Hay and Mercer [12] is an 
intermediate between Faran and ECAH. Thermal 
effects are neglected leading to equations a bit 
simpler and less accurate than ECAH. 
Numerically speaking, the HM model is slightly 
more robust and less ill-conditioned than the 
ECAH, but still very challenging. Once more, the 
corresponding equations (fully available in the 
original paper) are omitted. 

2.4 Model comparison (Faran, ECAH, HM) 

A comparison among the three models was 
carried out in the case of monodisperse spherical 
particles made of silica with radius a = 50 μm, 

over a broad range of frequencies. 

Figure 1 shows the far-field function computed 
through the models by Faran, ECAH and HM. At 
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very low frequency the ECAH and HM models are 
always identical and show little deviation from 
Faran model. This proves that thermal effects are 
negligible and viscous effects have little effect on 
the far-field function, which is rather dominated by 
elastic scattering effects. At higher frequencies, it 
is seen that ECAH model is not able to provide 
any result, while the HM model shows some 
deviations from Faran model predictions. Both 
effects are due to numerical issues. 

 

Figure 1 Comparison of the far field functions for 3 

different models: Faran (Δ), HM (□), ECAH (◊). 

Figure 2 shows the predictions of the three 
models for the attenuation, computed in the case 
of a particle volume fraction of 1%. For sufficiently 
high kc∙a values the three models provide identical 
results. This indicates the dominant role played by 
the scattering contribution. At low kc∙a values, 
Faran model greatly underestimates the 
attenuation values. This is caused by neglecting 
the viscous contributions. The attenuation 
provided by Kytömaa was added to the figure, 
which greatly underestimates the attenuation for 
large particle sizes. 

 

Figure 2 Comparison of attenuation for 4 different 

models: Faran (Δ), HM (□), ECAH (◊), Kytömaa (○). 

Based on these results, we can conclude that 
Faran model is suitable to describe the far-field 

function, which is essential to compute the 
backscattering, in the entire regime of interest. In 
the case of attenuation, however, Faran model is 
only suitable for sufficiently large particles, while 
the predictions of Kytömaa model could be 
superimposed to correct such lack. 

3 SEMIEMPIRICAL MODELS 

3.1 Moore model [13] 

Semiempirical expressions for f∞ and αs were 
provided in the Doctoral Thesis of Moore. These 
functions were obtained by comparison with 
experimental data. The only parameter entering 
the equation for the far field function is x=kc∙a. The 
far field function is given by the following 
expression: 
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while the attenuation for the scatterers is given as 
summation of the viscous attenuation and the 
attenuation due to scattering: 
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where M is the mass concentration of the 
scatterers and ζv and ζs are expressed as: 
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where  is the kinematic viscosity and ρs and ρ 
are the densities of scatterers and medium, 
respectively. 

3.2 Skripalle model [14] 

Semiempirical equations similar to those 
proposed by Moore were provided in the work of 
Skripalle et al.. The far field function is expressed 
in this case by the following equation: 
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while the attenuation is given by Equations (17), 
(18) and (19), with the function χ expressed by: 
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3.3 Model comparison (Faran, Moore, 

Skripalle) 

The far field functions computed through equation 
(13) (Faran), equation (16) (Moore) and equation 
(20) (Skripalle) are compared in Figure 3. One 
should note that Faran model predicts an angular 
dependence for the far field function, while the 
curve in Figure 3 only refers to the case of direct 
backscattering. The models agree very well for 
sufficiently small kc∙a values. On the other hand, 
when kc∙a increases, the semiempirical models 
seem to reach an asymptotic value, while Faran 
model displays strong oscillations. 

 

Figure 3 Comparison of the far field functions for 3 

different models: Faran (-), Moore (..), Skripalle (--). 

Figure 4 shows instead a comparison of a 
normalized attenuation αs∙a as a function of the 
variable x=kc∙a. One can observe that all models 
predict once more the same behavior for small 
values of x, where the dimensionless attenuation 
scales as x

4
. On the other hand, as soon as kc∙a 

increases Faran model shows strong deviations, 
as well as oscillatory behavior. Considering far 
field function and attenuation it can be seen, that 
the two empirical models are only valid in a 
narrow range of kc∙a values. 

 

Figure 4 Comparison of the attenuation for 3 different 

models: Faran (-), Moore (..), Skripalle (--). 

4 CONCLUSION 

The most promising model identified in this work 
is indeed the model proposed long ago by Faran. 
It is suitable for high density contrast systems, 
provides a rigorous description of the sonic 
behavior (then superior to available semiempirical 
models) and exhibits better numerical stability with 
respect to alternative detailed approaches, ECAH 
and HM. 
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